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Abstract

In this project, we analyzed the modified MNIST dataset and used deep learning models to identify handwritten
digits contained in each image and find the digit associated with the highest numeric value. Specifically, we
analyzed the performance of CNN architectures such as a basic CNN, VGG, ResNet, and EfficientNet, using
different hyperparameters such as optimizers, loss functions, learning rates, different preprocessing techniques
and augmentation methods. We find that overall, EfficientNet achieved higher accuracies and faster runtimes
compared to all the other models.

1 Introduction

In this project, we are given a modified MNIST dataset, a set
of images each containing three handwritten digits from the
MNIST dataset on a patterned background. The images are
in grey scale and represented by a matrix of pixel intensities.
Each image is associated with a label, corresponding to the
digit with the highest numerical value amongst the three hand-
written digits of that image. We are tasked with using deep
learning models to predict this label of handwritten digit with
the highest numerical value from each image and output the
result.

We have trained a simple 3 layer Convolutional Neural Net-
work, VGG, ResNet and EfficientNet on this dataset. Most of
the models were pretrained from ImageNet [3]. The best set
of hyperparameters found were the Adabound optimizer with
learning rate of 0.001 to 1, Cross Entropy loss, batch size of
50, and no preprocessing. A more detailed analysis of each
model and hyperparameter selection can be found in the Results
section below. We found that the above combination of hyper-
parameters with data augmentation trained on EfficientNet-
B2 produced the highest overall accuracy of 98.76% after 92
epochs.

2 Related Work

Classifying the MNIST dataset is a widely studied problem in
machine learning. There have been many previous work on
classifying MNIST handwritting digits, including many that
have achieved considerable accuracy. In 2012, Ciresan et al. [1]
introduced the multi-column deep neural network (MCDNN),
the first to achieve near-human performance on the MNIST
dataset and outperform humans by a factor of two on the traffic
sign recognition benchmark. The MCDNN achieved an error
rate of 0.23 on the MNIST dataset with 35-net MCDNN.

More recently, Kowsari et al. [13] from the University of Vir-
ginia introduced Random Multimodel Deep Learning (RMDL)
for classification. RMDL is an ensemble method that combines
Deep Neural Networks (DNN), Convolutional Neural Netwroks
(CNN), and Recurrent Neural Networks (RNN). It was able to
achieve an error rate of 0.18 on the MNIST with 30 RDLs.

3 Dataset and Setup

Figure 1: An example of the dataset with their respective train-
ing labels.

The dataset given to us were generated with three digits from
the original MNIST dataset combined with a set of patterned
backgrounds in grey scale. Each image is associated with a la-
bel, corresponding to the digit with the highest numerical value
amongst the three handwritten digits of that image. Because of
the set up of the problem, there is an imbalance in the dataset
where the label 0 is the least likely to occur compared to the
label 9, which is the most likely to occur as shown in Figure 2.



Figure 2: The distribution of all the tagged labels.

Therefore for training and validation, we have stratified our
dataset into 90% training and 10% validation set out of 50000
images for a balanced training strategy.

Knowing the number of training data can be insufficient to for
training, a data loader is setup such that data augmentation can
be applied before the images are loaded into a neural network.

Standardization is applied to each individual image before given
as input to a neural network for training and validation. Addi-
tionally, the images were modified using OpenCV to isolate the
digits from the background. Both the raw and filtered images
were used to train the models.

4 Proposed Approach

Given the time constraints and computing resources, we tried to
incrementally narrow down the best set of hyperparameters by
running controlled experiments while tuning each hyperparam-
eter separately. Conducting cross validation or doing a brute
force grid search would be infeasible given time period. We
started out with a default set of hyperparameters; specifically,
an Adam optimizer with a learning rate of 0.1, Cross Entropy
loss, batch size 100, no data augmentation and a simple thresh-
old preprocessing. Testing for the best set of hyperparameters
was conducted in the following order: optimizer, model archi-
tecture, preprocessing, batch size, loss function, learning rate
and data augmentation. For every incremental test, the best
hyperparameter and model combination that was found in the
previous tests is used as the default set of hyperparameters in
the following tests.

4.1 Preprocessing

The original images include three digits and various background
images. Several preprocessing steps were used to remove the
backgrounds from the images. To start, a basic threshold was
used to only display image intensities 254 to 255. This resulted
in the digits being isolated, but a lot of the details below the
254 intensity were filtered out as well.

A more complex preprocessing was used to preserve such de-
tails. The images were thresholded from intensity region 225
to 255. Then, the three largest connected components were
isolated, which indicated the three digits. Additionally, in order

to recover some of the lost details, a slight dilation was applied
to the connected components.

Figure 3: An example of the original (left), basic thresholding
(middle) and the connected components (right). The target
label is 9.

4.2 Neural Network Architectures

We have used a number of different models for our classifi-
cation task, including a simple 3 layer CNN, VGG, ResNet
and Efficientnet. Pretrained model parameters are always used
in the available model architectures as they reduce the time
needed for training. All the models use a technique called batch
normalization [9] to accelerate the learning process.

4.2.1 Convolutional Neural Network

Convolutional neural networks, or CNN, are deep learning mod-
els that takes a 3D tensor as input and at each layer transforms
this input tensor to an output tensor using differential equations.
[10] The CNN architecture is composed of three types of layers:
a convolutional layer, a pooling layer and a fully-connected
layer. The convolutional layer parameters consist of a set of
spatially small filters. We then slide the filters across the input
column and produce a 2-dimensional activation map of the
responses of that filter at each spatial position [10]. The activa-
tion maps are then stacked to produce the output volume. The
pooling layer is used to reduce the size of the representation
to reduce the number of parameters and computation in the
network, thus controlling overfitting. A fully-connected layer
has full pairwise connection between neurons of adjacent layers
[11]. The full network is formed by alternating the three types
of layers and trained with backpropagation.

Our simple CNN has 2 convolutional layers and 1 fully con-
nected layer. It is abbreviated as CNN-3.

4.2.2 VGG

The VGG network is a deep convolutional network trained by
Simonyan and Zisserman [17] at the Visual Geometry Group
at Oxford University. It consists of 16–19 weight layers and
achieved state-of-the-art results at the time of its release. The
VGG models that were used used include VGG-11 and VGG-
16, both with and without batch normalization.

4.2.3 ResNet

ResNet is a deep residual learning framework that fits stacked
layers to residual mapping instead of the desired underlying
mapping. [8] Let H(x) be the desired underlying mapping.
The stacked non linear layers are then fit to F (x) := H(x)−x.
The original mapping is recast into F (x)+x. This model seeks
to address the degradation of training accuracy problem in deep
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networks since it is hypothesized that it is easier to optimize
residual mapping than it is to optimize the original unrefer-
enced mapping [8]. It is the first neural network to achieve
superhuman results on ImageNet [6].

The ResNet models used include ResNet-18, ResNet-34 and
ResNet-50. ResNeXt-50, a wider version of the ResNet-50
model, was also used.

4.2.4 EfficientNet

EfficientNet is the current State-of-the-Art neural network
model for image classification on ImageNet [18]. EfficientNet,
aptly named, is a very efficient neural network that’s capable
of achieving a much higher accuracy (76.3% to 82.6%) than
ResNet with up to 21x fewer model parameters than existing
CNNs.

A neural network model can be scaled in terms of its width (in-
put/output channels), depth (number of layers) and resolution
(image resolution). EfficientNet tries to address the problem
of scaling within a neural network model by proposing a com-
pound scaling method. In conventional practice, models are
scaled arbitrarily. EfficientNet uniformly scales all 3 parame-
ters with a fixed scaling coefficient which can be found through
reinforcement learning.

The generation of scaled models from B0 to B7 come from Neu-
ral Architecture Search [19] since the effectiveness of model
scaling depends heavily on the baseline network.

4.3 Optimization

We have compared three different optimizers including the
Adam, stochastic gradient descent (SGD) and Adabound and
tested them with three different model architectures specifically:
CNN-3, VGG-16 and Resnet-18.

4.3.1 Adam

Adam is a first-order gradient-based optimizer for stochastic
objective functions. It only requires the first-order gradients
and little memory requirement. It takes the estimates of the first
and second moments of the gradients and computes individual
adaptive learning rates for different parameters. It works well
with sparse gradients and in on-line and non-stationary settings.
It is largely inspired by AdaGrad (Duchi et al., 2011), which
works well with sparse gradients, and RMSProp (Tieleman &
Hinton, 2012) [12].

4.3.2 Stochastic Gradient Descent

A standard gradient descent takes into account the cost and
gradient over the full training set, approximates the expectation
below and updates the parameters θ of the objective J(θ) as

θ = θ − α∇θE[J(θ)]

Stochastic Gradient Descent (SGD) however, instead of using
the entire training set, it only computes the gradient using a sin-
gle or a few training examples. The update rule then becomes,

θ = θ − α∇θJ(θ;x(i), y(i))

where (x(i), y(i)) is an example from the training set.

4.3.3 Adabound

Adabound is a variant of the Adam optimizer. The lower and up-
per bound are initialized as zero and infinity and then smoothly
converge to a constant final step size. It is an adaptive method
at the beginning of training, and then gradually transforms to
SGD, or with momentum, as time step increases. Adabound
improves on the Adam optimizer so it does not suffer from the
negative impacts of extreme learning rates. [15]

4.4 Loss functions

We have compared cross entropy loss and focal loss as our loss
functions.

4.4.1 Cross Entropy Loss

The cross entropy loss function measures the performance of a
model that has outputs of probability value 0 to 1.[4] It is the
negative log-likelihood of the logistic function defined by [7]

Loss(D) = −
n∑

i=1

yiln(σ(W
TXi))+(1−yi)ln(1−σ(WTXi))

where σ(WTXi) is the probability that the output yi=1 and
1−σ(WTXi) is the probability that the output yi=0, y ∈ {0, 1},
n is the number of training examples.

4.4.2 Focal Loss

The focal loss function reshapes the standard cross entropy to
better address the problem of class imbalance. It dynamically
scales the cross entropy loss such that scaling factor can auto-
matically down-weight the easy examples during training and
rapidly focuses the model on hard examples. [14]

5 Results

Our best score on the Kaggle leaderboard was achieved with
the following settings: EfficientNet-b2 model architecture, Ad-
abound optimizer with learning rate of 0.001 to 1, no prepro-
cessing, batch size of 50, cross entropy loss function and data
augmentation including random affine transformations with
10% translation, 40◦ rotation and a scaling factor of 70% to
100%. It yielded a validation set accuracy of 98.76%.

Figure 4: Accuracy of the model over 92 epochs.
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Figure 5: Training and validation losses of the model over 92
epochs.

A more detailed discussion on each hyperparameter selection
can be found below.

5.1 Optimizers and Learning rates

Using a default learning rate of 0.1, we tested the Adam, SGD
and Adabound optimizers. Using the CNN-3 and ResNet18
architectures, we found Adabound resulted in the best accu-
racy with 42.78% and 94.72% respectively for the CNN-3 and
ResNet18 models. For all further experiments, Adabound with
a final learning rate of 0.1 and a SGD learning rate of 0.001
was used (0.001, 0.1).

5.2 Model Architectures

Using the hyperparameters stated above, various architectures
were tested, including CNN-3, VGG-11, VGG-16, ResNet-
18, ResNet-34, ResNet-50, ResNeXt-50 and EfficientNet-b0.
We acquired the best validation set accuracy from ResNet-34
(97.14%), ResNet-50 (97.34%), ResNeXt-50 (97.86%) and
EfficientNet-b0 (96.26%) and therefore proceeded with them.
All the models were also pretrained.

5.3 Loss Functions

Cross entropy loss and focal loss were tested against
EfficientNet-b0. Cross entropy loss yielded a higher valida-
tion set accuracy with 96.26% compared to focal loss which
resulted in 95.56%. Therefore, cross entropy loss was used for
all further experiments.

5.4 Preprocessing

Preprocessing was then tested to determine the efficacy of re-
moval of the background images, the hypothesis being that
models would potentially function better with less noise in the
form of the background. However, we found that the more in-
volved the preprocessing, the lower the validation accuracy. All
of the models exhibited the highest validation accuracy using
the raw images, with the accuracy decreasing as the complexity
of the proprocessing increased. Given enough layers, it appears
the removal of the background is done more effectively by the
model itself. For example, when tested against EfficientNet-b0,

no preprocessing resulted in a validation accuracy of 96.26%,
the basic thresholded preprocessing resulted in 94.64% and
the more involved connected components resulted in 93.66%.
Therefore, for all further experiments, the the raw images were
used.

5.5 Batch Sizes

The default batch size used was 100 samples per iteration ex-
cept ResNet-50 and ResNext-50 due to memory constraints.
In 2017, Radiuk [16] investigated the effects of batch size on
CNN based model accuracies. The MNIST dataset was one of
the datasets tested against. The results showed that increasing
the batch size could result in faster convergence and greater
testing accuracies. As such, the batch sizes were increased
according to the models and their memory constraints. ResNet-
34 achieved a validation set accuracy of 97.76% using a batch
size of 200. EfficientNet-b0, in contrast, had a validation set
accuracy of 95.42% with a batch size of 200, 96.26% with a
batch size of 100 and 96.79% with a batch size of 50.

Therefore, all EfficientNet models henceforth used a batch size
of 50. ResNet-50 and ResNeXt-50, due to memory limitations
of the compute machine, used a batch size of 50. ResNet-34
used a batch size of 200.

5.6 Data Augmentation

Following the previous experiments, the best residual network
model, ResNeXt-50, and EfficientNet-b0 were chosen to ap-
ply data augmentation. Many different combinations of data
augmentation parameters were used, with parameters yielding
the best results being random affine transformations with 10%
translation, 40◦ rotation and a scaling factor of 70% to 100%.
While applying the data augmentation, it was also found that the
learning rates for the models needed to be changed to work best
with the augmentation settings. Specifically, for ResNeXt-50
the learning rate was set to (0.001, 0.01) and for EfficientNet-
b0, it was set to (0.001, 1). Using the stated hyperparameters
along with data augmentation, ResNeXt-50 achieved a valida-
tion set accuracy of 97.98% and EfficientNet-b0 achieved an
accuracy of 98.24%.

Figure 6: An example of data augmentation using the parame-
ters stated.

Building onto the EfficientNet-b0 model, EfficientNet-b1 and
EfficientNet-b2 were also trained and tested with the respective
validation set accuracies being 98.56%, 98.76%.

5.7 Final Results

Based on the experiments stated above, all hyperparameters
were chosen in a controlled manner. Each model required
fine-tuning hyperparameters separately for the best results. The
final results can be found in Table 1.
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Model Accuracy Epochs Runtime/Epoch (sec)
ResNet-34 97.76% 8 238
ResNet-50 97.34% 13 400
ResNeXt-50 97.98% 14 821
EfficientNet-b0 98.24% 48 102
EfficientNet-b1 98.56% 50 149
EfficientNet-b2 98.76% 92 218

Table 1: Final results - EfficientNet-b2 yielded the best valida-
tion set accuracy with 98.76%.

6 Discussion and Conclusion

In general, we found that the EfficientNet model architecture
gives the best performance along side its fine-tuned hyperpa-
rameters. Given more time and resources, an exhaustive grid
search could be conducted for all the hyperparameters. For the
given problem we may be able to generate synthetic datasets
using GANs [5] that could reduce the biases in prediction of
the given dataset as there may not be enough information to
represent all the possible combinations of three digits with dif-
ferent backgrounds. This could create a more general model
that detects the largest digit given any number of digits on any
kind of backgrounds.

With more computing resources, cross validation could help in
better fine-tuning each model. For this project, we used a held
out validation dataset to make changes. Similarly, ensembling
various models could also help in increasing overall accuracy.

We could also explore an automated method for generating data
augmentation [2] instead of fine-tuning them by hand. Addi-
tionally, transfer learning could be used from other types of
MNIST datasets.

7 Statement of Contributions

Jizhou worked on the implementation of testing pipeline and
researched on the different models and hyperparameters that
could improve our testing performance.

Nahiyan worked on image preprocessing as well as testing
models and hyperparameters to maximize accuracy.

Abby worked on VGG implementation and the report.
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