
Classification of Reddit Comments

Jizhou Wang Nahiyan Malik Abby Leung

Abstract

In this project, we analyzed text data from
Reddit, a popular social media forum, and
built classification models to predict what sub-
reddit a comment came from. Specifically, we
investigated the performances of the Bernoulli
Naive Bayes model, multinomial Naive Bayes,
logistic regression, support vector machine
(SVM), neural network and random forest on
the Reddit comments dataset. By extracting
word features from the comments, we have
found that the self implemented Bernoulli
Naive Bayes model had an accuracy of 0.4941.
Out of all the other models tested, we observed
that the neural network model had the best
accuracy of 0.5757 and the SVM model had
the fastest fitting and training runtimes.

1 Introduction

Text classification is defined as assigning text docu-
ments to predefined categories, in this case, comments
to specific subreddits. We first start with training set
D = (d1, . . . , dn), comments that are labelled with a
category L ∈ C , the set of all 20 subreddits. We then
find the classification model f : D 7→ C that predicts
the class of Reddit comments f(c) = L at the highest
accuracy. (Zhang et al. 2008)

The subreddits were as follows: hockey, nba, league-
oflegends, soccer, funny, movies, anime, Over-
watch, trees, GlobalOffensive, nfl, AskReddit, game-
ofthrones, conspiracy, worldnews, wow, europe,
canada, Music, baseball.

The Bernoulli Naive Bayes model is based off of word
counts where when 1, a word exist in the comment
when 0, it does not exist. For the best Bernoulli
model, our corpus was preprocessed with lower cas-
ing, stemming as well as removal of punctuation, En-
glish stopwords and words that occurred only once.
The highest accuracy for this model was 0.4941 with
a Laplace smoothing of 0.5.

Additional models were trained on the dataset in-
cluding multinomial Naive Bayes, logistic regression,

SVM and a neural network. The best accuracy was
achieved through a TF-IDF feature set using the
neural network model, with an accuracy of 0.5757.
Word2vec was also used to train word embeddings
from the Reddit comments. The highest accuracy
achieved based on word embeddings was 0.5696.

2 Related Works

Text classification is a well studied problem in ma-
chine learning. There have been many previous ap-
proaches in the area.

Multi-word with support vector machine

Zhang et al. proposed a method to implement multi-
word extraction from document based on syntactical
structure and k-mismatch for subtopic representa-
tion, determining the subtopic of the content of a
document. They carried out a series of experiments
on the Reuters-21578 dataset and found that subtopic
representation outperforms general concept represen-
tation. Furthermore, representation using individual
words outperforms representation using multi-word.
(Zhang et al. 2008)

Multinomial Naive Bayes

Kibriya et al. worked on improving the multinomial
Naive Bayes classifier using locally weighted learning.
They showed that though the performance of multi-
nomial Naive Bayes can be improved using locally
weighted learning, SVM is still the best method to
maximize accuracy. (Kibriya et al.)

3 Dataset and Setup

Given 70,000 comments as training samples separated
into 20 equally sized subreddit categories, many of the
entries are different in length, vocabulary used, etc.
Before feature extraction, we had to preprocess these

1



entries. These methods include tokenization, remov-
ing stop words, special characters and punctuation
as well as stemming or lemmatization to simplify our
assumption of the corpus vocabulary and reduce the
feature vector size. Some models like Bernoulli Naive
Bayes simplify assumptions even further by removing
infrequently occurring words, frequently occurring
stopwords and even punctuations. This could provide
a gain in its prediction performance, as the model
itself is simplistic.

More complicated models such as neural networks
could take in an entire corpuses without preprocess-
ing and in theory, provide a prediction accuracy much
higher than the simpler models, although it may
would require millions of training examples. As a
whole, all the models benefited from the preprocess-
ing.

4 Proposed Approach

Many feature extraction methods were implemented,
including word counts based on the bag of words
model and TF-IDF for both words and characters
(Ramos 2003). For further experiments, word embed-
dings such as word2vec and doc2vec (Goldberg et al.,
2014) were used as well. Custom features were also
tried: total number of words, upper cases, lower cases
and characters in a comment.

The Bernoulli Naive Bayes model is very simple. It
is based off of a binary 1 and 0 count associated with
the presence of a word. Many runtime optimiza-
tion strategies are used in the fitting and predicting
function of this model as it is the only self imple-
mented model. This includes sparse matrices (Davis
et al. 2011) as they reduced memory usage by only
saving the indices where 1’s occurred in the feature
vector. Vector operations on matrices also reduced
the runtime of the implementation by a significant
amount. For the Bernoulli model, the top search
space is defined on different preprocessing methods
with a default Laplace smoothing of 1. After find-
ing the preprocessed feature vector with the with
highest accuracy score, a grid search is conducted on
the Laplace smoothing hyper-parameters of 0.5 in-
crements from 0 to 3. We then chose the smoothing
parameter with the highest scoring result.

Other models were also trained including logistic re-
gression, support vector machines with a linear kernel,
multinomial Naive Bayes and multilayer perceptron

(neural network). Similarly to the Bernoulli Naive
Bayes analysis, grid search was used to tune the hy-
perparameters for each of the models. Two particular
changes were effective; the Laplace smoothing param-
eter was changed to 0.6 for multinomial Naive Bayes
and the penalty parameter C was changed to 0.2 for
SVM. For the neural network, an adaptive learning
rate was used with the solver ‘adam’ and 100 hidden
layers, which is the default value in scikit learn. A
random forest ensemble (Hedge et al. 2017) was done
as well. All other hyperparameters were kept to scikit
learn defaults.

In recent years, word embeddings have successfully
been applied to text classification problems (Tang et
al. 2014). As such, a Google pre-trained word2vec
model was used to train a neural network. Addition-
ally, a word2vec model was trained using the Reddit
comments, which achieved better results. Doc2vec
was also used as an unsupervised method to generate
vectors using the Reddit comments.

Our model validation pipeline consisted of a K-Fold
cross validation with 5 folds.

5 Results

For the Bernoulli Naive Bayes model, tests were con-
ducted on 7 different preprocessed text models with 5
different Laplace smoothing values shown in Table 1
below. The best model from the grid search had stem-
ming, lowercase words, punctuation and single word
occurrences removed with an alpha of 0.5 for Laplace
smoothing. Its validation accuracy was 0.4941 (sd.
0.00535). The average runtime for fitting was 0.1480
(sd. 0.00368) seconds and for predicting was 14.91
(sd. 0.632) seconds.

Abbreviations Preprocessing

Lo Lowercased
P Punctuations Removed
S Stemming
SS Space Separated
ST Stopwords Removed

#W #Word Occurances Removed

Table 1: Preprocessing abbreviations depicting each
step that was tested.

2



Preprocess Features α = 0 α = 0.5 α = 1 α = 1.5 α = 2

SS 235689 0.4309 0.4235 0.3940 0.3635 0.3296
SS, Lo 205930 0.4365 0.4397 0.4142 0.3852 0.3550

SP 112687 0.4730 0.4748 0.4549 0.4360 0.4191
SP, Lo 89320 0.4783 0.4892 0.4719 0.4557 0.4414

SP, ST, Lo 67391 0.4860 0.4918 0.4764 0.4641 0.4515
SP, ST, Lo, 1W 29362 0.4873 0.4941 0.4799 0.4683 0.4589

SP, ST, Lo, 1W, 2W 22202 0.4840 0.4931 0.4799 0.4685 0.4585

Table 2: Bernoulli Naive Bayes accuracy results. The
model was fitted on features with various preprocess-
ing steps.

For the rest of the models, both bag of words and TF-
IDF feature sets were tested, with TF-IDF always
having better accuracy. This makes sense because
compared to bag of words that simply counts words
as features, TF-IDF applied frequency-inverse doc-
ument frequency, giving more importance to words
appearing fewer times in the corpus. The following
are the accuracy and runtime results for the models:

Model Accuracy Runtime (fit) Runtime (predict)

Logistic
Regression

0.5494
(sd. 0.003036)

45.0169 secs
(sd. 1.411083)

2.7242 secs
(sd. 0.299077)

SVM
0.5643

(sd. 0.003854)
15.6515 secs

(sd. 1.684931)
2.4066 secs

(sd. 0.157584)

Multinomial
Naive Bayes

0.5509
(sd. 0.001818)

22.8844 secs
(sd. 1.477066)

2.9354 secs
(sd. 0.220009)

Neural Network
0.5757

(sd. 0.003649)
560.0027 secs

(sd. 11.918611)
2.5896 secs

(sd. 0.302799)

Table 3: Results from the scikit learn models. Four
different models were used with the neural network
achieving the best accuracy.

The neural network had the best results, although
the training time was drastically more than the other
models. This is to be expected due to more than
22,000 features per sample. Despite the large number
of features, the model converged after 11 iterations as
can be seen in Figure 1. Any more iterations resulted
in overfitting as the validation accuracy started to
decrease.

Figure 1: The loss from the neural network model
over its iterations. The training was stopped at iter-
ation 11.

Due to the large number of features and 20 different
classes, the random forest classifier was a good ensem-
ble method. Because each tree in the random forest
would depend on independent features, it could be a
good way to generalize given enough tree estimators.
However, with 1000 trees, only an accuracy of 0.4724
was achieved.

In order to more closely examine the features and
the most effective ones, a chi-squared test was used.
Incremental features based on the chi-squared test
were used to measure accuracy, as can be observed
in Figure 2, which showed that the more than 22000
features were in fact necessary.

Figure 2: The number of top chi-squared based fea-
tures used and the associated accuracy.

To reduce the number of dimensions from a high num-
ber of features, truncated singular value decomposi-
tion (SVD) from scikit learn was used. It is a memory
efficient method for dimension reduction compared to
principal component analysis (PCA). Many different
numbers of components were attempted, but even
with 2500 components, SVD only accounted for 0.69
variance.

We then tried word embeddings. Word embeddings
are vector representations of words based on cosine
similarities, which provides an effective way of com-
paring resemblances in words in a classification set-
ting (Pennington et al. 2014). Two different pre-
trained models, Google News and Twitter, were used
to train a neural network, which resulted in accura-
cies of 0.4496 and 0.4642 respectively. It is important
to note that the Google News corpus and the Reddit
comments vary a lot in context. Although the Twitter
corpus may be more similar to the Reddit comments,
Reddit comments are generally more structured, con-
textual and longer in length.

3



Due to the shortcomings of both pre-trained mod-
els, a word2vec model was trained using the Reddit
comments from the training set. Because the train-
ing dataset was not very large, a continuous bag-
of-words (CBOW) model was used, which tries to
predict the current word based on the surrounding
context (Mikolov et al. 2013).

Figure 3: A group of similar words to ’kawhi’, the
basketball player - Kawhi Leonard. The other words
are names of players that often discussed alongside
Kawhi Leonard.

The CBOW word2vec model was used to train a neu-
ral network, which resulted in an accuracy of 0.5696.
Another method, doc2vec, was used to train a neural
network using the Reddit comments from the training
set, which resulted in an accuracy of 0.52.

In an effort to acquire more training data, Google Big-
Query was used to query for Reddit comments that
have been scraped by Google. For each subreddit
and month in 2018, 5,000 comments were queried and
saved as additional training data, which resulted in
1,270,000 total training samples. A word2vec model
was trained and validated against the larger dataset.
Despite this, however, the accuracy did not improve
as the best accuracy from the larger dataset was
0.5409.

Both the word2vec and doc2vec models were outper-
formed by the neural network results based on the
TF-IDF features from the original, smaller dataset.

6 Discussion and Conclusion

From the experiments above, we have shown that a
simple model like Bernoulli Naive Bayes may not be
the best performing model compared to other com-
plex models in sentiment classification. More involved
models such as SVM, neural networks and even word

embeddings do not produce great results. There are
various reasons for this. A 20 class classification task
is quite complex, especially when the Reddit com-
ments can also vary in quality and length. A larger
dataset and a custom Reddit trained word embedding
model could result in better accuracy. Because of the
transient nature of some of the subreddits, the larger
dataset would preferably need to be from the same
timeframe as the test set for maximal results.

Other sentiment analysis work were conducted in pre-
dicting popularity of Reddit comments across differ-
ent subreddit communities (Horne et al., 2017) This
can be translated to a type of classification problem
if the predictions surpassed a threshold for it to be
considered popular within that subreddit (Terentiev
et al. 2014). In their work more features were used in
making predictions than just the text corpus, includ-
ing timestamps, flair, user activity. A future direction
could be to extract and include similar features in our
classification task.

Another suggestion to try is to increase our training
data sample size, as stated above, in order to train
more complex models such as Convolutional Neural
Networks (CNN) as suggested by (Aich et al., 2019).
Compared to other neural network models such as a
Recurrent Neural Network (RNN), CNN is suggested
to have higher accuracy for text classification tasks.

7 Statement of Contributions

Jizhou worked on the implementation and evaluation
of Bernoulli Naive Bayes and conducted tests on ac-
curacy, runtime and feature selection for that model.

Nahiyan worked on analyses of logistic regression,
SVM, neural network, multinomial Naive Bayes, ran-
dom forest, word2vec, doc2vec and feature selection.

Abby worked on the implementation of the neural
network model and the report.

References

1. Horne, Benjamin D., Sibel Adali, and Sujoy
Sikdar. ”Identifying the social signals that
drive online discussions: A case study of Red-
dit communities.” 2017 26th International Con-
ference on Computer Communication and Net-
works (ICCCN). IEEE, 2017.

4



2. Terentiev, Andrei, and Alanna Tempest. ”Pre-
dicting Reddit Post Popularity Via Initial Com-
mentary.” nd): n. pag (2014).

3. Aich, Satyabrata, Sabyasachi Chakraborty,
and Hee-Cheol Kim. ”Convolutional neural
network-based model for web-based text classi-
fication.” International Journal of Electrical &
Computer Engineering (2088-8708) 9 (2019).

4. Kibriya A.M., Frank E., Pfahringer B., Holmes
G. (2004) Multinomial Naive Bayes for Text
Categorization Revisited. In: Webb G.I., Yu
X. (eds) AI 2004: Advances in Artificial Intel-
ligence. AI 2004. Lecture Notes in Computer
Science, vol 3339. Springer, Berlin, Heidelberg

5. W. Zhang, T. Yoshida, X. Tang. Text classi-
fication based on multi-word with support vec-
tor machine. Knowledge-Based Syst., 21 (2008),
pp. 879-88

6. Ramos, Juan. ”Using tf-idf to determine word
relevance in document queries.” Proceedings of
the first instructional conference on machine
learning. Vol. 242. 2003.

7. Goldberg, Yoav, and Omer Levy. ”word2vec
Explained: deriving Mikolov et al.’s negative-
sampling word-embedding method.” arXiv
preprint arXiv:1402.3722 (2014).

8. Davis, Timothy A., and Yifan Hu. ”The Uni-
versity of Florida sparse matrix collection.”
ACM Transactions on Mathematical Software
(TOMS) 38.1 (2011): 1.

9. Hedge Yashaswini, Padma S.K. ”Sentiment
Analysis Using Random Forest Ensemble for
Mobile Product Review in Kannada.” 2017
IEEE 7th International Advance Computing
Conference (IACC). IEEE, 2017.

10. Duyu Tang, Furu Wei, Nan Yang, Ming Zhou,
Ting Liu, Bing Qin. ”Learning Sentiment-
Specific Word Embedding for Twitter Classifi-
cation.” Proceedings of the 52nd Annual Meet-
ing of the Association of Computational Lin-
guistics. ACL 2014.

11. Jeffery Pennington, Richard Socher, Christo-
pher Manning. ”Glove: Global Vectors for
Word Representation” Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP). EMNLP 2014.

12. Tomas Mikolov, Kai Chen, Greg Corrado, Jef-
frey Dean. ”Efficient Estimation of Word Rep-
resentations in Vector Space” arXiv preprint
arXiv:1301.3781v3 (2013).

5


